In this work, we propose a self-supervised multi-agent system, termed a memory-like adaptive modeling multi-agent learning system (MAMMALS), that realizes online learning towards behavioral pattern clustering tasks for time series. Encoding the visual behaviors as discrete time series(DTS), and training and modeling them in the multi-agent system with a bio-memory-like form. We finally implemented a fully decentralized multi-agent system design framework and completed its feasibility verification in a surveillance video application scenario on vehicle path clustering. In multi-agent learning, using learning methods designed for individual agents will typically perform poorly globally because of the behavior of ignoring the synergy between agents.
translated by 谷歌翻译
A central problem in computational biophysics is protein structure prediction, i.e., finding the optimal folding of a given amino acid sequence. This problem has been studied in a classical abstract model, the HP model, where the protein is modeled as a sequence of H (hydrophobic) and P (polar) amino acids on a lattice. The objective is to find conformations maximizing H-H contacts. It is known that even in this reduced setting, the problem is intractable (NP-hard). In this work, we apply deep reinforcement learning (DRL) to the two-dimensional HP model. We can obtain the conformations of best known energies for benchmark HP sequences with lengths from 20 to 50. Our DRL is based on a deep Q-network (DQN). We find that a DQN based on long short-term memory (LSTM) architecture greatly enhances the RL learning ability and significantly improves the search process. DRL can sample the state space efficiently, without the need of manual heuristics. Experimentally we show that it can find multiple distinct best-known solutions per trial. This study demonstrates the effectiveness of deep reinforcement learning in the HP model for protein folding.
translated by 谷歌翻译
Breast cancer is one of the common cancers that endanger the health of women globally. Accurate target lesion segmentation is essential for early clinical intervention and postoperative follow-up. Recently, many convolutional neural networks (CNNs) have been proposed to segment breast tumors from ultrasound images. However, the complex ultrasound pattern and the variable tumor shape and size bring challenges to the accurate segmentation of the breast lesion. Motivated by the selective kernel convolution, we introduce an enhanced selective kernel convolution for breast tumor segmentation, which integrates multiple feature map region representations and adaptively recalibrates the weights of these feature map regions from the channel and spatial dimensions. This region recalibration strategy enables the network to focus more on high-contributing region features and mitigate the perturbation of less useful regions. Finally, the enhanced selective kernel convolution is integrated into U-net with deep supervision constraints to adaptively capture the robust representation of breast tumors. Extensive experiments with twelve state-of-the-art deep learning segmentation methods on three public breast ultrasound datasets demonstrate that our method has a more competitive segmentation performance in breast ultrasound images.
translated by 谷歌翻译
病理学家需要结合不同染色病理切片的信息,以获得准确的诊断结果。可变形图像配准是融合多模式病理切片的必要技术。本文提出了一个基于混合特征的基于特征的可变形图像登记框架,用于染色的病理样品。我们首先提取密集的特征点,并通过两个深度学习功能网络执行匹配点。然后,为了进一步减少虚假匹配,提出了一种结合隔离森林统计模型和局部仿射校正模型的异常检测方法。最后,插值方法基于上述匹配点生成用于病理图像注册的DVF。我们在非刚性组织学图像注册(ANHIR)挑战的数据集上评估了我们的方法,该挑战与IEEE ISBI 2019会议共同组织。我们的技术的表现使传统方法的平均水平注册目标误差(RTRE)达到0.0034。所提出的方法实现了最先进的性能,并在评估测试数据集时将其排名1。提出的基于特征的混合特征的注册方法可能会成为病理图像注册的可靠方法。
translated by 谷歌翻译
在混合完成的多任务,多域和多模式数据上进行预训练仍然是视力感知预训练的开放挑战。在本文中,我们提出了GPPF,这是一个普遍的感知预训练框架,预先培训任务级的动态网络,该网络是由在标签的多任务和多域数据集上的各层知识“乐高”组成的。通过检查人类在复杂环境中学习的先天能力,我们识别并将三个关键要素转移到深网上:(1)同时暴露于每个批次中的各种交叉任务和跨域信息。 (2)由知识共享驱动的单独的乐高单元中的分区知识存储。 (3)用于训练和下游任务的乐高单元子集的稀疏激活。值得注意的是,由于其在输入形状,损失功能,输出格式,数据分布等方面的差异,不同视觉任务的联合培训是不平凡的。因此,我们创新地开发了插件的多任务培训算法,该培训算法是支持单个迭代多个任务(SIMT)同时培训。 Simt用大型多任务多任务数据集为预训练的基础奠定了基础,并且被证明对于我们的GPPF实验中的稳定培训至关重要。令人兴奋的是,详尽的实验表明,我们的GPPF-R50型号在GPPF-15M中的8个预训练预培训任务的强大基线上取得了显着改善,并在22个下游任务中收获了一系列SOTA,并具有相似的计算预算。我们还验证了GPPF对SOTA视觉变压器的概括能力,并具有一致的改进。这些可靠的实验结果充分证明了我们新颖的GPPF框架提供的有效的知识学习,存储,共享和转移。
translated by 谷歌翻译
深度神经网络的兴起为优化推荐系统提供了重要的驱动力。但是,推荐系统的成功在于精致的建筑制造,因此呼吁神经建筑搜索(NAS)进一步改善其建模。我们提出了NASREC,它是一种训练单个超级网的范式,并通过重量共享有效地产生丰富的模型/子构造。为了克服数据多模式和体系结构异质性挑战,NASREC建立了一个大型的超级网(即搜索空间),以搜索完整的体系结构,而SuperNet结合了多功能操作员的选择和密集的连接性选择,并使人类的密集连接性最小化。 Nasrec的规模和异质性在搜索中构成了挑战,例如训练效率低下,操作员不平衡和降级等级相关性。我们通过提出单操作员任何连接采样,操作员平衡互动模块和训练后微调来应对这些挑战。我们对三个点击率(CTR)预测基准测试的结果表明,NASREC可以胜过手动设计的模型和现有的NAS方法,从而实现最先进的性能。
translated by 谷歌翻译
FreeSpace检测是自动驾驶技术的重要组成部分,并且在轨迹计划中起着重要作用。在过去的十年中,已证明基于深度学习的自由空间检测方法可行。但是,这些努力集中在城市道路环境上,由于缺乏越野基准,很少有针对越野自由空间检测专门设计的深度学习方法。在本文中,我们介绍了ORFD数据集,据我们所知,该数据集是第一个越野自由空间检测数据集。数据集收集在不同的场景(林地,农田,草地和乡村),不同的天气条件(阳光,多雨,雾气和雪地)以及不同的光线条件(明亮的光线,日光,暮光,黑暗)中,完全包含12,198 LIDAR点云和RGB图像对与可穿越的区域,不可传输区域和无法达到的区域进行了详细注释。我们提出了一个名为Off-NET的新型网络,该网络将变压器体系结构统一以汇总本地和全球信息,以满足大型接收领域的自由空间检测任务的要求。我们还向动态融合激光雷达和RGB图像信息提出了交叉注意,以进行准确的越野自由空间检测。数据集和代码可公开可用athttps://github.com/chaytonmin/off-net。
translated by 谷歌翻译
基于面具的预训练在没有手动注释的监督的情况下,在图像,视频和语言中进行自我监督的学习取得了巨大的成功。但是,作为信息冗余数据,尚未在3D对象检测的字段中进行研究。由于3D对象检测中的点云是大规模的,因此无法重建输入点云。在本文中,我们提出了一个蒙版素分类网络,用于预训练大规模点云。我们的关键思想是将点云分为体素表示,并分类体素是否包含点云。这种简单的策略使网络是对物体形状的体素意识,从而改善了3D对象检测的性能。广泛的实验显示了我们在三个流行数据集(Kitti,Waymo和Nuscenes)上使用3D对象检测器(第二,Centerpoint和PV-RCNN)的预训练模型的效果。代码可在https://github.com/chaytonmin/voxel-mae上公开获得。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译